
JOURNAL OF MATERIALS SCIENCE 27 (1992) 1457 1463 

Fracture statistic of torsion and flexure in glass 
rectangular bars 
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MatemMicas, Universidad de Chile, Casilla 1420, Santiago, Chile 

Fracture statistics in rectangular bars subjected to torsion and to three-point bending are 
studied and the cumulative probabilities of fracture using Weibull's functions for materials that 
exhibit volume brittleness are determined. Diagrams of the cumulative probability fracture for 
commercial glass samples are plotted. The parameters of Weibull's functions regarding torsion 
and bending are appraised by employing lineal regression and nomograms, respectively. For 
torsion, dispersion of the parameters is determined by resorting to Fisher's information matrix. 
The size effect experimentally determined becomes half of the same theoretically determined. 
The different forms of the statistical functions followed by the same material in the two tests, 
are due to form and size influences of the cracks originating at the fracture, as well as to the 
finish of the sample sides. 

1. Introduction 
The probabilistic strength of bars subjected to torsion 
was theoretically and experimentally studied by Diaz 
and Morales [1] in the case of round bars. In this 
work a comparison of the experimental results of 
fracture statistics of torsion and flexure in glass cylin- 
ders was studied and parameters for the Weibull and 
Kies-Kittl  functions were obtained using the nomo- 
gram method. More recently the case of a prismatic 
bar subjected to torsion whose cross-section is a regu- 
lar polygon was treated by Diaz and Kittl [2]. The 
square bar was studied by Diaz and Kittl [3] and an 
elliptical bar by Kittl et al. [4] from a theoretical 
viewpoint. A probabilistic approach to the case of 
cylinders subjected to torsion has been discussed 
[5-93. 

The aim of this work is an experimental study of the 
probabilistic strength of a rectangular bar subjected to 
pure torsion and bending using the stress field ob- 
tained through elasticity theory and applied to com- 
mercial glass samples. The nomogram method is used 
to obtain the Weibull parameters and dispersion of 
the same is determined resorting to Fisher's informa- 
tion matrix. 

2. Stat ist ic of f racture through torsion 
The cumulative probability of fracture F(v) for mater- 
ials exhibiting volume brittleness and subjected to 
some uniaxial state of shear stress is as follows accord- 
ing to Weibull's theory 

F(~) = 1 - exp -- Voo *[~(r)]dV (1) 

where ~/o is the volume unit, V the body volume, r the 
position vector, r the maximum shear stress reached in 
the material before breaking, z(r) ~ z the stress field, 
and d~(z) the specific risk-of-fracture function. Weibull 
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[10] has proposed the following analytical form for 
this function: 

where % and m are the parameters depending on the 
manufacturing process of the material, while % is the 
stress under which there is no fracture. 

Consider a bar of length L with a rectangular cross- 
section with half minor side a and half major side b 
and let us assume that bar is not subjected to any 
internal force, and is free from external lateral forces. 
One end of the bar is fixed on to the plane x = 0 while 
the other end located in the plane x = L, is twisted by 
a couple of magnitude M whose moment is directed 
along the bar axis. The rectangular coordinates' origin 
is located at the gravity centre of the fixed base, the 
x axis coinciding with the directrix while the y and z 
axes are the principal axes of inertia of the section. The 
stresses are obtained from the elasticity theory [11], as 
follows: 

Zxr - 16ab 3z  1 - ~ 
(3) 

~xz - 16a3 b y  1 -- b~ 

therefore the stress field in a rectangular bar is given 
by 

= T2 ]1/2 �9 (y, z) (~z + -x , ,  

_ ab 2 [zZ(a 2 _ y2)2 + yZ(b2 __ Z 2 ) 2 ] 1 / 2  

9M 
16a2b 

O<<.y<~a, O<~z<~b, 0 ~< x ~< L (4) 
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using the following change of variables 
Y 

q = -;a ~ = b 
(5) 

and considering the limit cases of a thin rectangular 
bar and a square bar, above Equation 11 becomes 
[13] 

~ ( z )  - 

~ ( ~ )  - 

2Lab (z~'y" l 
Vo(m + 1 ) \ % /  z/z r 

4La 2 fTLX~ m [/ T "~ 

Vo t~o)  I 2 t l ' m ' ~ )  

then, the stress field defined in Equation 4 becomes 

Z(TI, 4) = z [ e 2 ~ 2 (  1 - -  1]2) 2 '~ r l2 (  1 - -  ~2)211/2 

9M 
~< z - 16a2 b (6) 

0 ~ < ~ < 1 ,  O <<. x <~ L, e = a/b. O~rl<~ 1, 

Two particular instances are of special interest, 
namely the cases wherein e = 0 and e = 1. The first 
case corresponds to the stress field of a thin rectangu, 
lar bar wherein the ratio a/b = e tends towards zero, 
while the second case represents the stress field in a 

f 
~ I T L  ( r  I _ 1)rn+l 

1 i l l 1  __ ( T L / ~ ) n ] a / z  d n  e = 0 (12) 

e = 1 (13) 

If some known analytical form is not assumed for do(z), 
i.e. using the integral equations method [14], then 
Equations 5, 6 and 7 allow us to obtain the following 
integral equation [13]: 

4Labf:of ~ ~(z) - Vo qb{z[e2~2(1 - n2)z 

+ q2(1 - ~2)211/2}drl d~ (14) 

whose solution is obtained by means of Taylor series 
expansions as follows [13]: 

Vo ~ ~(")(0) z" [0, 1] (15) 
~(z) - 4Laab,~=o n!II(e, n) e e 

and considering the limit cases of a thin rectangular 
square bar. 

Equation 1 can be rewritten as follows: 

1 1 f 
~(~) = ln]  Jv - F(~) - Vo qb[~(r)]dV (7) 

bar and the square bar, above Equation 15 becomes 
[13] 

Vo ,a (n + 1)r(n + ~)~("~(0) 
do(z) - 2(n)lT2Lab ,=o2" n!F(n + 1) 

e = 0 (16) 

Vo ~, ~(")(0) e 
dO(z) - 4La 2.~=oMll(1,n) e = 1 (17) 

Furthermore, in the particular case of a thin rect- 
angular bar when e = 0, the integral equation can be 
solved using a finite integral-differential operator. The 

where ~(z) is the Evans' function [123. 
If d0(z) is given by Equation 2 with '12 L = 0, i.e. using 

the defined functions method, and considering, the 
above Equations 5, 6 and 7 we obtain [13] 

~(Z) = Vo - 1 l ( e ,  m) 

'l(e,m)=f~f:Ee2r162 
and considering the limit cases of a thin rectangular 
bar and a square bar, above Equation 8 becomes 

2(~)l/2LabF(m + 1 ) ( z )  m 
~(z) - Vo(m + 1) F(m + 3) ~ e = 0 (9) 

4La2Ii(1, m) e = I (I0) 
~(~) - Vo 

wherein F(m) is the Euler gamma function. 
On the other hand, if the specific risk-of-fracture 

function (~(z) is expressed by means of Equation 2 with 
ZL # 0, then the consideration of Equations 5, 6 and 7 
yields [13] 

e ~ [0,1] < m, 

) e e [0, 1] (8) 

integral equation is transformed into an Abelian integ- 
ral equation whose solution yields [13] 

Vo d /  ~'~ d dn 
,(~) - 2-~Jgab~kXjo~nE(n)l/2~(n)](z _ nW2)  

( 1 8 )  

3. Statistic of fracture through flexure 
For the case of a rectangular bar subjected to three- 
point bending, the cumulative probability of fracture 

4 L a b  I/TL ~m i / T 

ff(, 12 e, ~ = ~[e2~2(1 - 112) 2 

~) = ( r l ,  ~) /e2~2(1  - -  ~12) 2 

tm + ]]2(] __ ~2)2]1/2 __ 1 d r ld~  (11) 
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is theoretically known for all cases of brittleness [15]. 
In this work, we take only results of the defined 
functions method in volume brittleness. So then, the 
Evans' function [12] when qb(z) is a Weibull's function 
w i t h  ( Y L  = 0 ,  i s  

~(o) = l n l  - F(o) - 2(m + i) 2V 0 

(19) 

and considering that @(o) is a Weibull's function with 
OL#O 

1 
~(o) = In 

1 - F ( c  0 

2Vo(m + 1 ) \ o 0 J  O-/OL 

[ = / ~ ( r  I - 1 )"+1  
x dr I (20) 

, j r  1"1 

4. Parameter  estimation 
For estimating parameters in flexure or torsion, it is 
convenient to use a graphical method which consists 
of obtaining the mentioned parameters by comparison 
using a non-dimensional nomogram [16-20]. 

The general expression of the cumulative prob- 
ability of fracture function can be rewritten as follows, 
when the specific risk-of-fracture function is given by 
Equation 2 

g OL m t (3" 

(21) 

where g is a non-dimensional function of material 
geometry and of parameter m. Rearranging Equation 
21 and taking into account Equation 7 we obtain 

ln~(<~) = l n ~ ' ( ~ L L , m ) +  ln[9(~--~ 'm~(~ 

(22) 

[ ( V  m](OL']"] (23) 
C = In g V00' / k O 0 /  J 

Now, plotting In ~,'(o/%, m) against ln(O/OL) for di- 
verse values of Weibull's parameters m supplies a non- 
dimensional graph called a nomogram. 

The parameters m, o0 and eYE for a particular case 
are obtained by drawing a Weibull diagram on trans- 
parent paper using therefore the experimental points; 
in other words, ln{(o) is plotted against in o and then 
moved parallel to ln{' and ln(o/ot )  axes so that the 
experimental points are fitted to some corresponding 
nomogram curve. This provides the immediate deter- 
mination of the parameter m. Then the coordinates of 
the origin of the system In ~' plotted against ln(O/OL), 
with respect to the system In ~(o) plotted against In o 
allow the other two parameters to be determined. The 
coordinates of the nomogram origin are (C, In Oc). 
The value of constant C is measured by the vertical 
distance between the horizontal axis of the nomogram 
and the horizontal axis of the plotting of the e x p e r t -  

mental points. Equation 23 is used to obtain para- 
meter ~o. 

When the specific risk-of-fracture function is given 
by Equation 2 with o L = 0, then a Weibull's diagram 
can be plotted and parameters are obtained from the 
respective lineal regression. 

In three-point bending, nomograms were derived by 
Le6n and Kittl [20] using the following expressions 
for ~' and C: 

m f ] / ( n l r  +1 ~' + 1 ~'~ - 

- dq 
r l  

(24) 
bhL (OL~ '~ 

C = ln2vo( m + 1)2\Oo / 

In torsion of a rectangular bar, nomograms were 
derived for the present work using the following ex- 
pressions for ~' and C: 

~' 12 e, ~L 

(25) 
C4Lab (xe )mq 

C = l n k - ~ - o  \ ~ /  
d 

The first case required plotting ln~' against ln(o/C~t) 
for diverse values of Weibull's parameter m. In the 
torsion case, plotting ln~' against In (z/%) for diverse 
values of Weibull's parameter m was required and, in 
addition, for diverse values of geometrical parameter 
e = a/b. We, therefore, obtain a set of nomograms for 
values of e between e = 0 and e = 1. 
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Figure i Non-dimensional diagrams. The hatched regions are the 
zones to the integration dominion N in Equation 11. 
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On the other hand, in the torsion case it is possible 
to obtain diagrams which show the zones on the cross- 
section wherein Equation 11 is defined. This was 
obtained by numerical methods putting {(z)= 0 in 
Equation (11) and entering values for parameter e and 
the ratio ZL/Z. Fig. 1 shows non-dimensional diagrams 
for the rectangular cross-section showing those zones 
(which is transformed into a square cross-section with 
sides equal to 2). The hatched regions correspond to 
the regions wherein "c/r E > 1 and they are the zones 
corresponding to the integration dominion N in 
Equation 11. 

5. Experimental procedure 
230 samples of commercial glass 0.0024 m in height 
and 0.015 m in width were used, 48 samples 0.089 m in 
length and 50 samples 0.040 m in length were sub- 
jected to a fracture test through flexure, and 91 
samples 0.10 m in length and 41 samples 0.05 m in 
length were subjected to a fracture test through tor- 
sion. The torsion arrangement included a loading disc 
R = 0.07 m in radius, a balance and a receptacle hang- 
ing on the disc, and this arrangement was mounted on 
a machine tool lathe. Specimen holders made of steel 
were constituted by a mechanical system of screws 
with double screw thread designed specially for hold- 
ing the samples. This arrangement allowed us 
to axially insert one of the specimen holders in a 
tailstock's centre sleeve of the lathe while the other 
specimen holder was inserted in axial fashion in the 
loading disc, thus avoiding damage to the specimens 
during the test. The load Q of fracture through torsion 
was applied by introducing a number of small weights 
in the said loading receptacle. Upon specimen 
fracturing these weights were totalled in order to 
ascertain Q. The maximum stress of torsional fracture 
is then given by 

9 Q R  

z -  16a2 b (26) 

wherein a is equal to half height and b is equal to half 
width and they correspond to the half of the sides of 
the rectangular cross-section. 

The flexure test was a three-point bending test 
where the load P was concentrated at the centre of the 
sample. For  this purpose a box of steel was construc- 
ted with supports and a system for applying the load 
through the introduction of small weights in a re- 
ceptacle. The balance was used to measure the load P. 
The maximum stress of flexural fracture is given by 

3 P L  
o - 2 b h  2 (27) 

where h is equal to the height, b the width and L the 
length of the sample. 

The experimental results were plotted in a diagram 
of the cumulative probability of fracture, for both 
lengths in each one of the considered tests. The said 
probability was determined using 

i - � 8 9  
F(~) - (28) 

N 

1 4 6 0  

where F(o) is the cumulative probability of fracture, i 
the number of samples that failed under some stress at 
most equal to cr, and N the number of the samples 
tested. 

6. A n a l y s i s  of the  results  and d iscuss ion  
Fig. 2 shows the cumulative probability of fracture for 
samples tested through torsion with length equal to 
0.10 m and through flexure with length equal to 
0.089 m. First, let us consider the curve corresponding 
to torsion, located at the right-hand side in the graph. 
The experimental data were distributed in accordance 
with a Weibull's specific risk-of-fracture function of 
two parameters, that is to say, a function given by 
Equation 2 with z e = 0. Second, the curve shown at 
the left-hand on Fig. 2 corresponds to the experi- 
mental data supplied by the three-point bending test. 
We can see that these data followed a distribution in 
keeping with a Weibull's function of three parameters 
given by Equation 2 with cr L # 0. Fig. 3 is analogous 
to Fig. 2 for samples 0.040 m long in torsion and for 
samples 0.050 m long in flexure. This fact, namely the 
different fracture statistics followed by the same ma- 
terial in the torsional and flexural tests may be ex- 
plained as follows. In torsion, fracturing is strongly by 
shear and because the samples were obtained by cut- 
ting from a commercial glass, hence the form and size 
of the resultant cracks on the lateral edges appear to 
have a great influence on this process and then the 
maximum stress does not have either an upper limit or 
a lower limit. On the other hand, in flexure, fracturing 
is through traction and the form and size of the cracks 
coming from the manufacturing process are very im- 
portant and because the sides subjected to traction 
have a good finish and, in consequence, small cracks, 
the maximum stress has a very large upper boundary 
and a lower limit o t .  The reason for the difference in 
fracture statistics between torsion and flexure may not 
be due to the fact that the torsion or the flexure 
experimental configuration would introduce another 
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Figure 2 Long specimens subjected to flexure ((3) and torsion (e). 
a' = 2a, b' = 2b. 
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Figure 3 Short specimens subjected to flexure (O) and torsion (0) .  
a' = 2a, b' = 2b. 

stress than that shown herein. If so in torsion, these 
stresses would be flexure stresses and in the event of 
becoming large then the experimental curve of torsion 
should exhibit some shape similar to that of the ex- 
perimental curve of flexure, excepting a certain shift- 
ing due to size effect. Experimental findings show, 
however, that such an introduction of flexure stresses 
is null or negligible. 

The parameters of the Weibull function of the speci- 
fic risk-of-fracture with % = 0, in the torsion case, 
were evaluated through a lineal regression. Rearrang- 
ing Equation 8 gives 

4 L a b  
ln~(z) = mlnz  + l n ~ I i ( e , m ) .  (29) 

Establishing a comparison between the lineal regres- 
sion applied to the experimental points and Equation 
29, the values of the parameters are, therefore, deter- 
mined in a direct form. The parameters of the Weibull 
function of the specific risk-of-fracture with cr L # 0, in 
the flexure case, were evaluated by preparing a non- 
dimensional nomogram. Fig. 4 shows how the value of 
the constant C is graphically ascertained by measuring 
the vertical distance between the horizontal axis of the 
distribution of the nomogram and the horizontal axis 
of the experimental points. 

The minimum chi-square was used as an estimator 
for the adjustment between the probability distribu- 
tion used and the data in both tests. It is a squared 
error-consistent estimator under quite general condi- 
tions and is given by 

( K  i _ _  tFi)2  i=r  
g a = /_.. ; ~,  K i  = t (30) 

i=1 tFi i=i 

where the population is classified into r classes each 
comprising kl elements, t is the number of trials and 
Fi the probability of failure in the classes. 

The dispersion of the parameters of the cumulative 
probability-of-fracture functions may be estimated 
through Fisher's information matrix [21]. The coeffi- 

cients of the Fisher matrix are determined using 

('t/O2 In f(z; O) "~ . . . .  
- n - -  Jr'c) o z  ru J ~  80,80) ) (31) 

where r u is the coefficient i, j ;  n the sample size, 0 the 
parameters, and f ( r ) =  dF(r)/dz the density function 
of fracture probability. The simple structure of the 
function of the cumulative probability of torsional 
fracture, when the specific risk-of-fracture function is 
a Weibull function with % = 0, renders if possible to 
resort to the Fisher's matrix. In this case, the elements 
of the matrix become 

[ 1 OK "~2 2n OK (0.42277 - In K) 

+ m~-(1.82379 -- 0.84555 ln K + In 2 K) 

:o( ,n +04  77) r12 - -  K-  ~rrt 

where 

4 L a b  
K -- 1 l ( e , m )  

Vo 

When zL = 0, the matrix of variances and covariances 
is easily obtained through the inversion of the Fisher 
matrix, with the condition that r l l  I> 0. So then, vari- 
ances and covariances were determined using 

var (m) - r22 
El l r 2 2  - -  s 

vat (%) - ri1 
r l l ree _ r~ 2 (33) 

?'12 
cov(m,%) - r2e -- r l lr2e 

In the flexure case where ~L # 0, the required calcu- 
lation in the Fisher matrix is very cumbersome, and 
hence it becomes more convenient to use another 
method to obtain the dispersion of the parameters; for 
instance, the Monte-Carlo simulation method may be 
resorted to. 

The values of the parameters were indicated in 
Tables I and II, along with the mean stress fracture 
and the Z 2 of the distribution of probability used, for 
both lengths in each one of the two tests. In addition, 
the variances of the parameters are indicated for the 
torsion case. 

The size effect [22] was studied for both tests. The 
experimental points of the two tests of torsion for both 
lengths were plotted in on one graph. The same was 
done for the flexure tests. The graphs show a separa- 
tion between the distributions, that could correspond 
to the size effect. To ascertain this fact, it is necessary 
to establish a comparison between what is expected by 
the theory and what is found by experiment. Let us 
then take Equation 8 rewritten for two volumes given 
by L = 0.10 m (long specimens) and L = 0.05 m (short 
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Figure 4 Weibull's function nomogram used to obtain the Weibull's parameters in the flexure test. (�9 Long specimens. 

T A B L E  I Weibull's parameters, mean strength, variances and chi- 
square estimator for both iengths used in the torsion test. j = class 

number 

Torsion test Short Long 
specimens specimens 
L = 0.040 m L = 0.089 m 

m 7.091 7.512 
Parameters z 0 (MPa) 11.87 14.09 
Mean strength ~ (MPa) 113.56 109.22 
Variances Var (m) 0.17 0.38 

Var (%) 1.42 4.41 
Chi-square .~2 7.97 ( j  = 9) 4.71 ( j  = 8) 

2 •0.95 ~j=3) 12.6 11.1 

T A B L E  I I  Weibull's parameters, mean strength and chi-square 
estimator for both lengths used in the flexure test. j = class number 

Flexure test Short Long 
specimens specimens 
L = 0.05 m L = 0.10 m 

m 1.2 1.2 
Parameters o 0 (MPa) 2.2 x 10 -s  2.7 x 10 -5 

cr L (MPa) 40.85 42.52 
Mean strength cy (MPa) 78.35 73.80 
Chi-square Z 2 10.0 (j = 10) 7.81 (j = 8) 

;(2.9 s o=4) 12.6 9.49 

specimens) in the torsion case 

ln~L(z ) = In Vo + I n -  Ii(eL, mL) (34) 
\ZoL / 

ln~s(Z) = In + l n ~ o s  ) Ii(es, ms) (35) 

where the subscript L indicates the long specimens 
and subscript S the short specimens. Substracting 
Equation 34 from Equation 35 and assuming 
that parameters are the same for both volumes, and 
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T A B L E  I I I  Size effect in torsion and flexure tests 

Torsion Flexure 

Theoretical result 
Second member of Equation 36 0.685 0.792 

Long 
Experimental result specimens 0.2739 0.378 
First member of Equation 36 Short 

specimens 0.2900 0.398 

C L ~ CS, gives 

( VL ) (36) ln~L(z ) - ln~s(~ ) = In Vss 

In order to establish a comparison between two 
members of Equation 36, we calculate the mean- 
fracture stress for the two lengths after evaluating the 
first member of Equation 36 for the two mean-stresses 
and the second member for the ratio of volumes. The 
same is done for flexure. The results of the calculations 
are shown in Table III. It is clear that the experimental 
size effect is approximately a half that of the theoret- 
ical value. This last fact may be due to the existence of 
random boundary conditions coming from experi- 
mental configuration such as axes put off-centre, 
absence of parallelism and other effects which would 
be why the shifting is less than that theoretically 
expected. 

7. Conclusions 
The problem of obtaining the specific risk-of-fracture 
function for the cases of torsion and flexure has been 
completely solved using the defined-functions method. 
The different fracture statistics followed by the com- 
mercial-glass samples when subjected to torsion or to 
flexure, are due to the influence of the finish of the 
edges. 



In the case of torsion (fracture is strongly by shear), 
the form and size of the resultant cracks on the lateral 
edges appear to have a great influence on this pro- 
cess, which involves the existence on neither of upper 
limit nor of lower limit, and the statistics followed 
were Weibull statistics with ZL = 0. On the other hand, 
in the case of flexure (fracture is through traction), the 
form and size of the cracks coming from the manufac- 
turing process are very important and because the 
sides subjected to traction have a good finish, there 
exists a very large upper boundary and a lower limit 
cy L, and the statistics followed were Weibull statistics 
w i t h  o" L 5/= 0. 

In torsion, diagrams for integration dominion of 
~(x) have been obta ined by numerical methods. It 
should be emphasized that the integral equation 
method has a difficult application to the torsion case 
because the form of the equation involves the exist- 
ence of a Taylor series expansion, but it is important 
because, without assuming some known analytical 
form for the specific risk-of-fracture function, the same 
may be obtained by applying some numerical method 
to the function ~(z) which is known from practical 
experience. When e = 0 it, however, corresponds to 
the case of a thin rectangular bar and the integral 
equation is transformed into an Abelian integral equa- 
tion whose solution for qb(z) can be obtained by deriva- 
tion from Equation 18. The experimental result for the 
size effect is approximately a half of the theoretical 
result of the same, for both tests carried out. This last 
fact can be due to the existence of random boundary 
conditions. 
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